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Abstract 
 

Structural equation models with non-linear constraints make it possible to 
estimate interaction effects while correcting for measurement error. Up to now, 
only direct effects have been specified, thus wasting much of the capability of 
the structural equation approach. In addition, the complexity of this approach 
has made its use much less appealing than it deserves in the marketing and 
management literatures. This article questions the actual usefulness of the 
constraints in the current specifications, and proposes reducing their number or 
even eliminating them completely, which leads to a more easily handled model 
that is also more robust to non-normality. The paper also presents and discusses 
an extension of Jaccard and Wan's, and Jöreskog and Yang's specification that 
can handle direct, indirect and interaction effects simultaneously. The approach 
is illustrated using empirical data for studying indirect and moderate effects of 
“value orientations with respect to the environment” on both “possibilities of 
influencing events” and on “environmentally-friendly consumer behavior” such 
as buying and boycotting certain products. 
 
 
 
 

 
Joan Manuel Batista-Foguet. <batista@esade.edu>  
Germà Coenders.  <coenders@udg.es>  
Willem E. Saris. <saris@pscw.uva.nl> 



 2

Introduction 
 
Moderated Regression Analysis (MRA) -a particular specification of 
Multiple Linear Regression analysis- has been widely used (particularly 
in marketing research) for testing models that involve the presence of a 
variable that influences the impact of an independent variable on a 
dependent variable (Irwin and McClelland, 2001; Sethi et al., 2001; 
Keller, Lipkus and Rimer, 2003). However measurement error makes 
estimates of regression coefficients in MRA inconsistent and biased. 
Biased estimates -actually attenuated estimates- limit the use of the 
technique to purely predictive purposes. This bias is especially relevant 
for interaction effects that are usually of low magnitude (second order 
effects) and may easily go undetected if attenuated. Additionally, the 
estimated standard errors of regression coefficients are also biased; thus 
no coherent inferences about population parameters or relationships 
among variables can be made.  
 
The use of Structural Equations Models (SEM) for correcting for 
measurement error has been proposed in the management literature, 
mainly by researchers in marketing (Ashok et al., 2002; Bagozzi and Yi, 
1989; Homer, 1990; Martin and Stewart, 2001). However, SEMs have 
been proposed only rarely for estimating interaction effects (Ping, 1995).  
 
In 1984 Kenny and Judd proposed a possible specification for modeling 
interaction effects with Structural Equation Models, known nowadays as 
the Moderate Structural Equation Model (MSEM). Kenny and Judd´s 
approach requires each latent variable to relate to at least two indicators 
and implies the formation of multiple indicators based on the products of 
the observed variables. These products are then used as indicators of the 
latent interaction.  
 
Different alternatives have been proposed for developing Kenny and 
Judd’s approach. It is not the aim of this paper to provide a 
comprehensive presentation of the various procedures currently available 
for testing interaction effects with MSEM (see for this purpose Li et al., 
1998; Schumacker and Marcoulides, 1998, or Cortina et al., 2002), they are 
only conceptually clustered below as:  
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− Two-step approaches (Coenders et al., 2003; Jöreskog, 2000; Mathieu 
et al., 1992; Ping, 1995; Ping, 1996; Schumacker, 2002). In a first run, 
based on the main effects’ indicators, they estimate certain parameter 
values of the measurement model or alternatively factor scores that are 
later used for the interaction factor in the second run. 

− One-step two-stage least squares approach (Bollen and Paxton, 1998). 
It has the disadvantage of using a limited information estimator, which 
leads to poorer estimates (Moulder and Algina, 2002). 

− One-step maximum likelihood approaches (Jaccard and Wan's, 1995; 
Jöreskog and Yang, 1996). Both approaches estimate the complete 
model with the main effects, interaction term, structural and 
measurement parts in one step. Both require specification of non-linear 
constraints, most of which are heavily based on the normality of main 
effects’ indicators. Jöreskog and Yang use only one product indicator 
of the latent interaction and a mean and covariance structure, while 
Jaccard and Wan use multiple product indicators and a covariance 
structure. Due to the use of only one indicator, the Jöreskog and Yang 
approach shares typical features of limited information approaches if 
the indicators are not congeneric or the sample size is small, the results 
changing depending on which indicator is chosen (Saris, Batista-
Foguet, and Coenders submitted to JMR).  

 
Kenny and Judd’s seminal article was published many years ago and 
MSEM applications have become rare in the marketing and management 
literature. As far as we know, only a methodologically-oriented article 
(Ping, 1995) has appeared in the field. As already mentioned, Moderate 
Regression is mostly used instead of MSEM, despite the former’s obvious 
weakness in not taking measurement errors into account. This indicates that 
cumbersome approaches (complex non linear constraints) have deterred 
practitioners from using MSEM. This is hardly surprising, given that the 
approach requires a great deal of expertise in fitting SEM. Furthermore, not 
all SEM software can handle such constraints. Moreover, probably due to 
the influence of the Moderate Regression approach, every MSEM 
application (except Batista-Foguet et al., in press) is restricted to a single 
equation model, limiting SEM to only estimating direct effects. 
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Since the two-step and two stage least squares approaches force the user to 
leave the conventional framework of structural equation modeling and 
make it difficult to compute either most of the diagnosis indexes commonly 
used in SEM or correct standard errors, this paper focuses on the maximum 
likelihood one-step strategy. This paper has two main objectives: First, the 
extension of the single equation approach to a simultaneous structural 
equation system in which the main effect and interaction terms may not be 
exogenous and in which variables may be related through a multitude of 
direct and indirect effects; Second, the paper critically addresses the 
problem of modeling and testing interaction hypotheses, contributing to the 
discussion among methodologists on SEM (Jöreskog and Yang, 1996; Ping, 
1995; Ping, 1996; Jaccard and Wan, 1996; Li et al., 1998; Jöreskog, 1998; 
Algina and Moulder, 2001; Schumacker, 2002; Moulder and Algina, 2002; 
Cortina et al., 2002) by combining aspects of the different strategies that 
tend to make the approach simpler and relying on fewer assumptions. Our 
proposal shows that, when considering only two indicators for the latent 
interaction, constraints are unnecessary. So, we try to smooth the MSEM 
approach for practitioners and at the same time allow them to cope with a 
wider variety of situations by: 
 
− Simplifying Jaccard and Wan’s (1995) and Jöreskog and Yang’s (1996) 

approaches by avoiding the need to use a mean structure and reducing or 
even eliminating the need for non-linear constraints.  

− Using multiple (at least two) indicators of the latent interaction like 
Jaccard and Wan (1995), thus moving to a truly full information 
approach. Only non-overlapping pairs of indicators are used to compute 
the product thus leading to a simpler specification without correlated 
errors. 

− Extending the applicability of the method to variables that are not 
normally distributed, by avoiding the non-linear constraints that assume 
normality. 

− Generalizing the single equation structural model towards a 
simultaneous structural equation system. This would allow the 
researcher to have the interaction anywhere in the model, making it 
possible to estimate direct, indirect and total effects of the latent 
variables involved, thus exploiting the full strength of SEM. 
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The single equation model with one or two indicators 

Before we present our proposals for extending and simplifying the 
approach, we start with the standard single equation model (Fig. 1) that 
has been specified for MSEM and presented in Equation 1: 
 

Figure 1: Single equation SEM for modeling interaction effects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 η4=α4 +β41η1+ β42 η2 + β43 η3 + ζ4 , where η3=η1•η2 (1) 

where βkl stands for the regression coefficient of ηk on ηl  and ζ4 is the 
disturbance term, which - as usual - is assumed to be independent of η1 and 
η2. In this approach all three variables η1, η2 and η3  are exogenous 
variables with free variances ψkk and covariances ψkl. Even if η1 and η2 are 
centered η3 is not. So, other parameter of the model not shown on the 
equation are E(η3)=α3 . Furthermore we have Var(ζ4)=ψ44.   
 
It is assumed, without loss of generality, that the exogenous latent variables 
and the endogenous latent variables have two indicators. This is a key point 
in the paper since we will show that using two non-overlapping indicators 
does away with the need for the constraints  required for identification 
purposes as discussed by Jaccard and Wan (1995) or by Jöreskog and Yang 
(1996). 
 

η2 η3 = η1η2 

η1 
 

 η4 
 ζ4

ψ31

β41 β42 β43

ψ21 
ψ32 

α3 

α4          
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In contrast with Jöreskog and Yang (1996), we specify a two-non-
overlapping-interaction-indicator measurement model. The single indicator 
model is obtained by omitting the equation for y6. 
 
 y1=τ1 + η1 + ε1 
 y2=τ2 +λ21 η1+ ε2 

y3=τ3 + η2 + ε3 
 y4=τ4 +λ42 η2+ε4 
 y5=τ5+ λ51η1+λ52η2+λ53η3 + ε5  (2) 
 y6=τ6 +λ61 η1+λ62η2+λ63 η3 + ε6  

y7=τ7 + λ74 η4 +  ε7  

 y8=τ8 + λ84 η4 +  ε8 

 

where y5=y1y3 and y6=y2y4 and are thus independent non-overlapping 
measures (another possibility would be using y1y4 and y2y3). Without any 
loss of generality, the scale of the latent variables is fixed by constraining 
two loadings to 1.  
 

  λ11=λ32=1 (3) 

Additional parameters of the measurement part are Var(εj)=θjj. The 
specification is completed with the assumptions that η1, η2,  and ε1  to ε8 
have zero expectation. Additionally, ε1 to ε8 are assumed to be mutually 
independent (not only uncorrelated) and independent of η1, η2, and ζ4.  
 
These assumptions allow us to analyze the expectation, variance and 
covariance of the product indicator, as well as to derive non-linear 
constraints, relating their associated parameters.  
 
The product indicators, y5, y6, can be decomposed as: 
 

 y5=y1y3=(τ1+η1+ε1)(τ3+η2+ε3)=τ1τ3+τ3 η1+τ1η2+η2η1+ε5   (4)  

 y6=y2y4=(τ2+λ21η1+ε2)(τ4+λ42η2+ε4)=τ2τ4+τ4λ21η1+τ2λ42η2+λ21λ42η2η1+ε6 (5)     

where: 
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 ε5=τ3ε1+1ε3+ η1ε3+ η2ε1+ ε1ε3   (6) 
  ε6=τ4ε2+τ2ε4+λ21η1ε4+λ42η2ε2+ε2ε4     
 
The following constraints can be derived from the expressions of y5 and y6, 
in Equations 2 to 6: 

 
 τ5=τ1τ3 
 λ51=τ3 
 λ52=τ1

  (7) 
 λ53=1 
 

 τ6=τ2τ4 
 λ61=τ4

 λ21 
 λ62=τ2λ42

  (8) 
 λ63=λ21λ42 

 
The measurement error variances and covariances can also be derived, 
which involves the following constraints:  
 
 θ51 = E(ε5ε1) = τ3 E(ε1ε1) = τ3 θ11 (9) 
 θ53 = E(ε5ε3) = τ1E(ε3ε3) = τ1 θ33 

 

 θ62 = E(ε6ε2) = τ4 E(ε2ε2) = τ4 θ22 (10) 
  θ64 = E(ε6ε4) = τ2E(ε4ε4) = τ2 θ44 

 

while 

 θ65=Ε[(τ4ε2+τ2ε4+λ21η1ε4+λ42η2ε2+ε2ε4)(τ3ε1+τ1ε3+η1ε3 +η2ε1+ε1ε3)]=0 (11) 

as even overlapping pairs of terms in ε5 and ε6 are multiplying independent 
centered variables. It can also be shown that Cov(ε6η1)=Cov(ε6η2)= 
Cov(ε5η1)=Cov(ε5η2)=0.  
 
The error variances can also be expressed as functions of other parameters, 
as: 
 

 θ55 = Var(ε5)= Var(τ3ε1 + τ1ε3 + η1ε3+ η2ε1+ ε1ε3 ) = (12) 
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     =τ3
2 Var(ε1) +τ1

2 Var(ε3)+Var(η1)Var(ε3)+ Var(η2)Var(ε1) 
                            +Var(ε1)Var(ε3) =τ3

2 θ11+τ1
2θ33+ ψ11θ33+ ψ22θ11+θ11θ33 

 

 θ66 = Var(ε6)= Var(τ4ε2 + τ2ε4 + λ21η1ε4+ λ42η2 ε2+ ε2ε4 ) = (13) 
 τ4

2 θ22+τ2
2θ44+ λ2

21ψ11θ44+ λ2
42ψ22θ22+θ22θ44 

 
as under independence all covariances among any possible pairs of terms 
composing ε5 or ε6 are zero, even if they overlap. 
 
The single indicator case omits y6 and as a consequence the constraints in 
Equations 8, 10, 11 and 13. The remaining constraints that follow are 
common for both the single and the two-indicator cases. 
 
The expectation of the interaction latent variable will be: 
 

 α3 =E(η3)=E(η1η2)=Cov(η1η2)=ψ 21 (14) 

Other constraints are possible if the normality assumption is made besides 
the independence assumption (Jaccard and Wan 1995; Anderson 1984): 
 

 ψ33  =Var(η3)=Var(η1·η2) =Var(η1)Var(η2)+Cov2(η1η2)= ψ11 ψ22 + ψ2
21 (15) 

 Cov(η3η2)=ψ 32=0; Cov(η3η1)=ψ 31=0 (16) 

 

Jöreskog and Yang suggested using only one indicator and constraints 
7,9,12,14,15 and 16. Estimating the model with all these non-linear 
constraints requires a considerable technical capability of the researcher 
and it is even not possible to estimate this model with programs which do 
not include non-linear constraints. This is certainly one of the reasons 
why this approach is not frequently used in research. Fortunately, we will 
show in the next section that the estimation can be done with many fewer 
or even no restrictions at all.  
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Specification with Minimal constraints 
 
Jaccard and Wan (1995) or Cortina et al (2002) suggested ignoring the 
mean structure. This involves centering the y1 to y4 indicators prior to 
computing the product indicators, and using only the covariance matrix as 
input for the model estimation (that is, recentering the interaction 
variables once they have been computed). Although the introduction of 
the mean structure can result in a gain of several degrees of freedom, no 
improvements in terms of bias or standard errors have been reported in a 
large simulation study (Moulder and Algina, 2002). Further advantages of 
using centered indicators and ignoring the mean structure are:  
 
− Algina and Moulder (2001) report frequent non-convergence problems 

when the main effect indicators are not centered.  
− With the LISREL program, a complicated parameterization (see 

Jöreskog and Yang, 2001 and appendix 2) must be used for robust 
estimation with mean structures, which requires even more expertise 
from the modeler.  

− Centering variables prior to computing the product, minimizes the 
relationships between the variables and the product computed from 
them, which reduce collinearity (See Li et al., 1998, and the Appendix 
in Irwin and McClelland, 2001). The fact that the interaction indicators 
now load only on the interaction latent variable and not on the main 
effect latent variables also reduces collinearity between the main effect 
and interaction indicators. 

− The number and complexity of non-linear constraints is greatly 
reduced.  

 
If the variables are centered, then all τ and α parameters are zero and 
from (7) to (11) it follows that λ51=λ52=λ61=λ62=0 and 
θ51=θ53=θ62=θ64=0. Thus many restrictions are no longer needed and 
only the following constraints remain: 
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 λ53=1 (7b) 
 
 λ63=λ21λ42 (8b) 

 

 θ55 =ψ11θ33+ ψ22θ11+θ11θ33 (12b) 

 

 θ66 = λ2
21ψ11θ44+ λ2

42ψ22θ22+θ22θ44 (13b) 
 
 ψ33  = ψ11 ψ22 + ψ2

21 (15b) 
 
 ψ 32= ψ 31=0 (16b) 
 

Constraints 15, 16, 15b and 16b make use of a result regarding the 
variance of the product of two normal variables. If the original measures 
are severely non-normal, then the variance of the product variable can be 
very different from the value implied by their development, and the 
interaction model may perform poorly” (Rigdon et al., 1998). Our own 
simulations using several distributions for η1 and η2 showed substantial 
departures of  ψ33  from  ψ11 ψ22 + ψ2

21  and of ψ31 and ψ32 from zero. 
Under a correlation of .7 between η1 and η2, relatively small skewness 
and kurtosis (-1 and +1) resulted in deviations between ψ33 and 
ψ11 ψ22 + ψ2

21 in the 30%-40% range. In the case of skewness around 1, 
the correlation between η3 and η2 or η1 was around 0.4. 
 
Fortunately, these constraints are not necessary for identification, even in 
the single indicator case. Jöreskog (personal communication, February 
14, 1995) indicated that researchers can deal with non-normality merely 
by relaxing some of the constraints that are part of the Kenny-Judd 
interaction model. Thus, the cost of non-normality here may be no more 
than a loss of parsimony (Rigdon et al., 1998). However, these constraints 
are customarily introduced by practitioners without performing any 
normality test, likely because of following to the letter the influential 
work of Jöreskog and Yang (1996). So we suggest avoiding these 
constraints. 
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Jaccard and Wan (1995) suggested using all constraints 7b to 16b. 
However, for identification purposes, only 7b is needed. Additionally, 
they introduced all other possible pairs of product indicators (y1y4 and 
y2y3) even if not needed either for the model identification. The error 
covariances between overlapping pairs (y1y4-y1y3; y1y4-y2y4; y2y4-y2y3; y1y3-
y2y3) were left free, though it would have been possible to constrain them 
to appropriate non-linear functions of model parameters. For instance, the 
covariance between y1y4 and y1y3 is λ42ψ22θ11. 
 
In this paper we follow Jaccard and Wan in using centered indicators (as 
mentioned, this makes things a great deal simpler and workable). 
However, as regards constraints and selection of indicators we suggest 
departing from Jaccard and Wan and Jöreskog and Yang in the following 
respects: 
 
− In the single indicator case, only constraint 12b is needed for 

identification and will be used. Constraints 15b and 16b, which rely on 
normality, are thus omitted.  

− In the multiple-indicator case, only the linear constraint 7b is needed 
for identification, although the very simple non-linear constraint 8b 
can also be used if software permits. 12b and 13b do not require 
normality and may also be used by expert modelers but are not 
necessary for identification. 

− We also suggest dropping overlapping pairs of indicators as suggested 
by Bollen and Paxton (1998) and Schumacker (2002) as they only 
unnecessary complexity in exchanging information that is actually 
redundant. 

 

Extension to a simultaneous structural equation system  
 
MSEM have so far usually been modeled with one equation, where the 
regressors that interact are exogenous latent variables (Schumacker and 
Marcoulides 1998; Li et al., 1998; Schumacker, 2002; Moulder and 
Algina, 2002; Cortina et al., 2002). This single equation formulation, 
discussed in the SEM literature, only makes it possible to estimate direct 
and interaction effects. In order to also estimate for instance an indirect 
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effect in the same model, a simultaneous structural equation system must 
be specified for including direct, indirect and moderating effects in the 
same model. We show a very simple example in Figure 2. 
 

Figure 2: SEM including direct, indirect and interaction effects 
simultaneously 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The structural part of the model would include equation 1b (without the α 
term) and an additional equation for the relationship among the up to now 
exogenous variables, η1 and η2.  
 

 η2=β21η1+ζ2 (17) 

Only η1 and η3=η1η2 remain exogenous. Additional parameters of the 
structural part are: ψ11, ψ22, ψ33, ψ32 and ψ31. It must be taken into account 
that ψ32 is not the covariance between η2 and η3 but between ζ2 and η3 . 
Besides, now ψ21=0. 
 
The main difference with the previous specification is that not all the 
variances and covariances of η1 and η2 are model parameters but rather 
functions of model parameters that can be derived from path analysis or 
from variance and covariance algebra: 

η3= η1η2 

β21 

β43

ζ4

β41
ψ32

η1 

η4 

ψ31

η2 

  ζ2 

β42 
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 Var(η2 )=ψ22+β2

21ψ11  (18)  

 Cov(η1,η2)=β 21ψ11 (19)  

The assumptions are the same as before with the addition that ζ2 is 
uncorrelated with η1. 
 

Substituting in Equations 12b to 16b the new expression for Var(η2) and 
Cov(η1,η2) yields:  
 

 θ55 =ψ11θ33+ (β21
2 ψ11 + ψ22)θ11+θ11θ33 (12c) 

 θ66=λ2
21ψ11θ44+ (β21

2 ψ11+ψ22 )λ42θ22+θ22θ44 (13c) 

 ψ33 =ψ11 (ψ22+ β2 21 ψ11) + ( β 21 ψ11 )2 (15c) 

 Cov(η3η2)=ψ 32+β21ψ31=0; Cov(η3η1)=ψ 31=0 (16c) 

The model in this section also estimates the relationship between η1 and 
η2 and thus both a direct and an indirect effect from η1 to η4. The joint 
interpretation of indirect and interaction effects is discussed in Batista-
Foguet et al. (in press), who basically fitted the same model with the 
single indicator approach and constraints 12c and 15c. Their analysis thus 
required normality and included highly complex constraints for this 
relatively simple model. This complexity would grow to unbearable 
levels even for moderately sophisticated models. Just imagine a model 
including exogenous variables affecting η1 and η2.  
 
As was mentioned, for the single indicator approach, constraint (12c) is 
the only to be needed. It does not require normality, but it has increased 
its complexity due to the fact that Var(η2) is a function of model 
parameters. For the two-indicator approach, none of the constraints is 
needed, though constraint 8b has not increased its complexity and may be 
introduced if so wished. Constraints 15c and 16c require normality and 
are never required or advised. 
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Although we illustrated this issue for a simple model, this result holds 
true for  SEM models with interaction term anywhere in the model. This 
means that these interaction effects can be estimated with a minimal 
burden of extra restrictions. 

Eliminado: ¶
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An illustration 
 
 
Data and Measurement Instruments 
 
Our approach is illustrated using one example that has been discussed 
also by Saris, Batista-Foguet, and Coenders (submitted to JMR). This 
example is based on data  from the British pilot study of the European 
Social Survey (2002). In that study, a variable has been measured 
indicating “environmental friendly customer behavior” like buying and 
boycotting certain products (η4). Furthermore, measures are available for 
“value orientations” with respect to the environment (η1) and for the 
possibilities of influencing events,  “political influence variable” (η2). See 
in Appendix 1 for the two items-indicators corresponding to each of these 
variables. We expect that the value orientation will only affect behavior if 
people believe they can influence the situation. So we expect an 
interaction effect of these two variables which is represented by η3.   
  
Sample size was 429 and EM imputation of missing values was used. The 
main effect indicators are non-normally distributed. The maximum 
absolute skewness was .75 for y4 and the maximum absolute kurtosis was 
-.92 for y1. As a consequence, we are reluctant to include constraints that 
assume normality in our specification, and we will show the advantages 
of our proposal by comparing the following models:  
 
(a) Single indicator with mean structure only with constraints not 

requiring normality: 7, 9, 12c adapted to include τ parameters, 14 
adapted to include indirect effects;  

(b) Two interaction indicators plus constraints: 8b, 12c, 13c;  
(c) Two interaction indicators plus constraint: 8b;  
(d) Two interaction indicators without constraints. 
 
 
 
 
 

Con formato: Fuente: Negrita

Con formato: Fuente: 15 pt,
Negrita

Eliminado: ¶
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Estimation method 
 
Normality of the interaction indicators is not assumed by any of the 
analyses and would be difficult to fulfill, as the product of two normal 
variables is in general not normally distributed. This calls for robust 
standard errors and test statistics like the ones described by Satorra and 
Bentler (1988, 1994).  The LISREL8.5 program (Du Toit and Du Toit 
2001) includes these robust statistics and allows the researcher to 
introduce non-linear constraints and is thus appropriate for the estimation 
of this model and will be used in this paper. Maximum likelihood 
estimation is used throughout.  
 
 
Results 

In this section the models presented before are fitted to the data of the 
example using either one (analysis a in Table 1) or two indicators 
(analyses b to d in Table 1) for the latent interaction, and using alternative 
sets of constraints, except those constraints requiring normality. Some 
constraints are correct under milder assumptions but grow in complexity 
with the model (Equations 12c, 13c as in analyses a and b), other 
constraints are always strictly observed and kept simple (Equation 8b as 
in analysis c). 
 
The inclusion of additional constraints is expected to reduce standard 
errors, though some are unworkable for large models. As already 
mentioned, the inclusion of constraints requiring normality is likely to 
affect the consistency of estimates if normality does not hold. Thus, 
constraints in Equations 8b, 12c, and 13c should lead to the best results in 
terms of efficiency but certainly not in terms of simplicity. Thus, we 
expect the two-indicator case with constraints 8b to be a sensible trade off  
between the two requirements (analysis c). 
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Table 1: Estimates and standard errors of key parameters and goodness of fit indexes 
under different assumption 

 

(a) Single indicator with mean structure plus constraints: 7, 9, 12c, 14. 
(b) Two interaction indicators plus constraints: 8b, 12c, 13c. 
(c) Two interaction indicators plus constraint: 8b. 
(d) Two interaction indicators without constraints. 

 
As shown by the Satorra-Bentler Scaled χ2, RMSEA and SRMR values, 
the fit of all models was good enough to proceed to the comparison of 
their results. 
 
A first look at the table tells us that, in general, differences are not very 
large so that the simplest approaches, like analyses c and d, all using two 
indicators and simple or no constraints, can be used instead of the very 
sophisticated (a) approach of Jöreskog and Yang (1996). 
 
Going into detail: 
 
− The addition of constraints to a given model tends to reduce standard 

errors, but it does so by such a narrow margin that it is hardly worth 
the additional complexity. Actually, standard errors of analysis (c) are 
not generally larger than those from other analyses including complex 
constraints, and are even smaller than those of analysis (a) that 

    Parameter/Index (a) (b) (c) (d) 
β43 -.268 -.198 -.198 -.184 

s.e β43 .070 .054 .056 .066 
β42 .500 .473 .474 .477 

s.e β42 .076 .069 .069 .069 
β41 .168 .158 .158 .158 

s.e β41 .039 .033 .033 .033 
β21 .029 .010 .009 .008 

s.e. β21 .040 .037 .037 .036 
Satorra-Bentler χ2 11.76 15.45 14.51 14.04 

d.f. 10 18 16 15 
p-value .301 .631 .561 .523 
RMSEA .021 .000 .017 .000 

90%CI RMSEA .00; 
.058 

.00; .036 .00; .041 .00; .043

SRMR .005 .019 .019 .020 

Con formato: Fuente: 12 pt,
Negrita
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includes the information contained in the means. The introduction of 
additional indicators generates degrees of freedom that seem to more 
than offset the omission of the means and of constraints. 

− In the two indicator case, if no non-linear constraints are used, 
virtually all software programs handling SEM could be used. In 
Appendix 2 we also present the setup for analysis (d) with EQS 5 for 
Windows (Bentler and Wu, 1995), a program that does not include 
non-linear constraints. The price that has to be paid is a slight increase 
in standard errors with respect to analysis (c). 

− The addition of a second interaction’s indicator does alter the point 
estimate of β43, in the way that can be expected when moving from a 
method which in some respect is one of limited information to one of 
full information. Differences can be even larger if the items are not 
exactly congeneric (Saris, Batista-Foguet and Coenders submitted to 
JMR) or if the sample is small, which makes us recommend use of 
multiple interaction indicators on a general basis.  

 
 
Conclusions and recommendations 

The paper provides a more simplified and parsimonious specification and 
an extension of the usual approaches for modeling interactions using 
SEM. 
 
The main idea underlying the simplified approach stems from the fact that 
there are still very few MSEM users in comparison with those modeling 
interaction effects. Researchers keep using MRA instead because MSEM 
simply requires too much methodological expertise. 
 
Since Kenny and Judd (1984), all other approaches have involved two 
step methods with unclear theoretical statistical properties or one step 
methods with very complicated non-linear constraints, some of which 
required normality which, according to our simulations, is a very unwise 
assumption.  
 
This paper has shown that while the single indicator model by Jöreskog 
and Yang (1996) requires the introduction of non-linear constraints for 
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model identification purposes, when using at least 2 indicators for the 
latent interaction and when omitting the mean structure, no non-linear 
constrains are need or advisable.   
 
The main idea underlying the extension of the approaches used so far is 
that by restricting MSEM to one equation model they are actually 
diminishing the potentiality of SEM. So, MSEM should also being able to 
cope with relatively complex models, including indirect effects as well as 
the direct ones. The elimination of the need for complex constraints, 
makes the approach much more workable, independent of the complexity 
of the model and the fulfillment of the assumptions (not requiring 
normality) while allowing applied researchers to fit these models easily 
even with standard software (without non-linear constraints),  
  
So, a very practical recommendation is to use two or more indicators for 
the latent interaction and: 
 
− For a simple model or even a model with a single equation, constraints 

8b, 12b-13b are relatively simple, do not require normality and can be 
used if one wishes to attain a marginal increase in efficiency, but they 
are not needed for identification. This is illustrated in analysis (b). 

− For a model with several equations, only constraint 8b remains simple 
and can be used though it is not required for identification, as we did in 
analyses (c). 

− For a researcher whose software cannot handle non-linear constraints, 
even constraint 8b can be dropped. This has been our approach for 
analysis (d).  

 
If the main effects have more than two indicators, it is also possible to 
form a larger number of non-overlapping pairs as indicators of the latent 
interaction, which will result in even smaller standard errors. As before, 
no constraints are needed.  
 
As regards estimation, since the product indicator will not be normally 
distributed even if the main effect indicators are. Methods are needed that 
are robust to departures from normality (Yang and Jöreskog 2001). 
However, it must be noted that these methods do not correct the bias 
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incurred if constraints 15b, 16b, 15c or 16c are introduced under non-
normal main effect factors. This is so because robust methods in SEM 
only improve the correctness of standard errors and test statistics under 
violation of distributional assumptions, not the consistency of point 
estimates under introduction of wrong constraints (e.g. Satorra, 1990).   
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Appendix 1. The measurement of the different variables of Figure 1. 

In the ESS pilot study, the following measures were available for the 
different variables of interest. “Value orientations” with respect to the 
environment” were measured by items of  Schwartz’s (1997) value scale. In 
the pretest of the European Social Survey, the original item -containing two 
parts- was split into two separate items: an importance statement and a 
norm. Saris, Batista-Foguet, and Coenders (submitted to JMR) have shown 
that these items are congeneric which means that they measure only the 
same variable (η1).  
 
The two items were presented to the respondents in the following form: 
 
How much like you is this person? 
 
y1: Values1. Looking after the environment is important to him/her.  
y2: Values2. He/she strongly believes that people should care for nature. 
 
1 very much like me, 2 like me, 3 somewhat like me, 4 a little like me, 5 
not like me, 6 not like me at all  
 
Two question was asked to measure “political influence” (η2):  Also these 
questions are congeneric as shown by Saris, Batista-Foguet, and Coenders 
(submitted to JMR) 
 
How far do you agree or disagree with each of the following statements? 
 
y3: Control1. I think I can take an active role in a group that is focused on 
political issues. 
y4: Control2. Exactly the same statement was repeated after a period of 
time (only the response scale was reversed). 
 
1 very much like me, 2 like me, 3 somewhat like me, 4 a little like me, 5 
not like me, 6 not like me at all  
 
The dependent variable is a “environmental friendly customer 
behavior” variable measuring purchasing and boycotting of products and 
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other items for environmental and other political reasons (η3). This 
measure has been asked in two different ways, the second at the end of 
the supplementary methodological questionnaire (after approximately 45 
minutes of other questions): 
 
y7: Buy1. How many of the four things on this card have you done during 
the last 12 months? 
 
1. Deliberately bought certain products for political, ethical or  
    environmental reasons 
2. Boycotted certain products 
3. Donated money 
4. Raised funds  
 
y8: Buy2. During the last 12 months, have you done any of the following?  
 
1. Deliberately bought certain products for political, ethical or 

environmental reasons 
2. Boycotted certain products 
3. Donated money 
4. Raised funds  

 
1 Yes,   2 No 
 
Buy1 automatically provides a score between 0 and 4. For Question 
Buy2,  the number of “yes” answers were summed to get the total score.  
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Appendix 2:  LISREL setups for Models (a) and (c); EQS setup for 
model (d) 
 
LISREL8 setup.  Yang-Jöreskog  approach (Model a).  
! AUGMENTED MOMENT MATRIX USED AS COVARIANCE MATRIX.  
! LAST COLUMN OF LAMBDA CONTAINS TAU PARAMETERS,  
! LAST COLUMN OF BETA CONTAINS ALPHA PARAMETERS. 
DA NI=9 NO=429 MA=CM  
LA 
VALUES1   VALUES2  CONTROL1  CONTROL2   INTY1Y3   BUY1  BUY2  const 
CM = 8origimp.cm 
AC= 8origimp.ac 
MO NY=8 NE=5 LY=FU,FI BE=FU,FI TE=SY,FR PS=SY 
LE 
values control interact buying CONSTANT 
PA LY 
0 0 0 0 1 
1 0 0 0 1 
0 0 0 0 1 
0 1 0 0 1 
1 1 0 0 1 
0 0 0 0 1 
0 0 0 1 1 
0 0 0 0 0 
PA TE 
0 
0 1 
0 0 1 
0 0 0 1 
0 0 0 0 1 
0 0 0 0 0 1 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 1 
PA BE 
0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 1 
1 1 1 0 0 
0 0 0 0 0 
PA PS 
1 
0 1 
1 1 1 
0 0 0 1 
0 0 0 0 1 
ST 1 LY(2,1) LY(4,2) LY(7,4) 
VA 1 LY(1,1) LY(3,2) LY(5,3) LY(6,4) LY(8,5) 
co ly(5,5)= ly(1,5)*ly(3,5) 
co ly(5,1) = ly(3,5) 
co ly(5,2) = ly(1,5) 
co te(5,5) = ly(1,5)**2*te(3,3)+ly(3,5)**2*te(1,1)+ps(1,1)*te(3,3)+ps(2,2)*te(1,1)+be(2,1)**2*ps(1,1)*te(1,1)+te(3,3)*te(1,1) 
co te(5,1) = ly(3,5)*te(1,1) 
co te(5,3) = ly(1,5)*te(3,3) 
co be(3,5) = be(2,1)*ps(1,1) 
OU ML RS EF 
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LISREL8 setup. Model (c) with two interaction indicators. Simple constraint: 8b 
DA NI=8 NO=429 
 LA 
 VALUES1   VALUES2   CONTROL1  CONTROL2   INTY1Y3   INTY2Y4   BUY1  BUY2 
 CM fi=cov.cm re 
 AC fi=ascov.ac re 
 MO NY=8 NE=4 LY=FU,FI TE=SY,FR PS=SY BE=FU,FI 
 LE 
 VALUES CONTROL INTERACT BUYING 
 PA LY 
 0 0 0 0 
 1 0 0 0 
 0 0 0 0 
 0 1 0 0 
 0 0 0 0 
 0 0 1 0 
 0 0 0 0 
 0 0 0 1 
 PA TE 
 0 
 0 1 
 0 0 1 
 0 0 0 1 
 0 0 0 0 1 
 0 0 0 0 0 1 
 0 0 0 0 0 0 1 
 0 0 0 0 0 0 0 1 
 PA BE 
 0 0 0 0 
 1 0 0 0 
 0 0 0 0 
 1 1 1 0 
 PA PS 
 1 
 0 1 
 1 1 1 
 0 0 0 1 
 ST 1 LY(2,1) LY(4,2) 
 VA 1 LY(1,1) LY(3,2) LY(5,3) LY(7,4) 
 co LY(6,3) = LY(2,1)*LY(4,2) 
 OU ML RS EF 
 
/TITLE  
  EQS Setup for Model (d) with two interaction indicators. No constraints at all.  
/SPECIFICATIONS  
  DATA='C:\EQS\SIXINTE1.ESS'; VARIABLES=  8; CASES=  429;  
  METHODS=ML,ROBUST; MATRIX=RAW;  
 /LABELS  
  V1=values1; V2=values2; V3=control1; V4=control2; V5=INTy1y3; V6=INTy2y4; V7=buy1; V8=buy2;  
 /EQUATIONS   
   V1 =  + 1F1  + E1; 
   V2 =  + *F1  + E2;  
   V3 =  + 1F2  + E3;  
   V4 =  + *F2  + E4;  
   V5 =  + 1F3  + E5;  
   V6 =  + *F3  + E6;  
   V7 =  + 1F4  + E7;  
   V8 =  + *F4  + E8;  
   F4 =  + *F1  + *F2  + *F3  + D4;  
   F2 =  + *F1  + D2;  
 /VARIANCES  
   F1 = *;    F3 = *;    
   E1 = 0;   E2 = *;   E3 = *;    E4 = *;   E5 = *;    E6 = *;    E7 = *;    E8 = *;  
   D4 = *;    D2 = *;  
 /COVARIANCES  
    D2 , F3 = *;  
    F1 , F3 = *;  
  /END  



 25

References 
 
Algina, J; Moulder, B.C. (2001) “A Note on Estimating the Jöreskog –
Yang Model for Latent Variable Interaction Using LISREL 8.3”, 
Structural Equation Modeling, 8, January: 40-52. 
 
Anderson, T. W. (1984) An Introduction to Multivariate Statistical 
Analysis. New York: Wiley. 2nd edition. 
 
Ashok, K.; Dillion, W. R.;  Yuan, S. (2002) “Extending Discrete Choice 
Models to Incorporate Attitudinal and Other Latent Variables”, Journal of 
Marketing Research, 39, February: 31-46. 
 
Bagozzi, R. P.; and Yi, Y. (1989)  “On The Use of Structural Equation 
Models Experimental Designs”, Journal of Marketing Research, 26, 
August: 271-284. 
 
Batista-Foguet, J. M.; Coenders, G.; Saris, W. E.; Bisbe, J. “Simultaneous 
Estimation of Indirect and Interaction Effects Using Structural Equation 
models”, Metodološki Zvezki. [In press]. 
 
Bentler, P. M.; Wu, E. J. C. (1995) “EQS for Windows User'S Guide”, 
Encino, CA: Multivariate Software, Inc. 
 
Bollen, K. A.;  Paxton, P. (1998) “Interactions of Latent Variables in 
Structural Equation  Models”, Structural Equation Modeling, 5 (3),  July: 
267-293.  
 
Coenders, G.; Bisbe, J.; Saris, W. E.; Batista-Foguet, J. M. (2003) 
“Moderating Effects of Management Control Systems and Innovation on 
Performance. Simple Methods for Correcting the Effects of Measurement 
Error for Interaction Effects in Small Samples”, Working Paper of the 
Department of Economics, University of Girona, 7, June:1-21 
<http://www.udg.edu/fcee/economia/english/document.htm> 
 



 26

Cortina, J. M.; Chen, G.; Dunlap, W. P. (2002) “Testing Interaction Effects 
in LISREL: Examination and Illustration of the Available Procedures”, 
Organizational Research Methods, 4 (4), October: 324-360.  
 
Davis-Blake, A.; Broschak, J. P.; George E. (2003) “Happy together? How 
Using Non Standard Workers Affects Exit, Voice, and Loyalty among 
Standard Employees”, Academy of Management Journal, 46 (4) 
December: 475-485. 
 
European Social Survey. (2002) <www.europeansocialsurvey.org> 
 
Harrison, D. A.; Price, K. H.; Gavin, J. H.;  Florey, A. T. (2002) “Time, 
Teams, and Task Performance: Changing Effects of Surface- and Deep-
Level Diversity of Group Functioning”, Academy of Management 
Journal, 45 (5): 1029-1045. 
 
Homer, P. M. (1990) “The Mediating Role of Attitude toward the Ad: 
Some Addition”, Journal of Marketing Research, 27, February: 78-96. 
 
Irwin, J. R.; McClelland, G. H. (2001) “Misleading Heuristics and 
Moderate Regression Models”, Journal of Marketing Research, 38, 
February: 100-109. 
 
Jaccard, J.;  Wan, C. K. (1995) “Measurement Error in the Analysis of 
Interaction Effects between Continuous Predictors Using Multiple 
Regression”, Psychological bulletin, 117 (2): 348-357. 
 
Jaccard, J.;  Wan, C. K. (1996) LISREL Approaches to Interaction Effects 
in Multiple Regression”, Thousand Oaks,  CA: Sage Publications Inc. 
 
Jöreskog, K. (1998) “Interactions and Nonlinear Modeling: Issues and 
Approaches”, in Schumacker, R. E.;  Marcoulides G. A. (eds). Interactions 
and Nonlinear Effects Structural Equation Models. Mahwah, NJ: Lawrence 
Erlbaum Associates. Inc. 
 



 27

Jöreskog, K. (2000) Latent variable scores and their uses. Lincolnwood, 
IL: Scientific Software International (available at <http://www.ssicentral. 
com/lisrel/corner.htm)> 
 
Jöreskog, K.;  Yang, F. (1996) “Non-linear Structural Equation Models: the 
Kenny-Judd Model with Interaction Effects”, in Marcoulides, G. A.;  
Schumacker, R. E. (ed.) Advanced Structural Equation Modeling. Mahwah, 
NJ: Lawrence Erlbaum Associates. Inc. 
 
Keller, Punam, Anand, Lipkus, Isaac M.; Rimer, B. K. (2003) “Affect, 
Framing, and Persuasion”, Journal of Marketing Research, 40, February: 
54-65.  
 
Kenny, D. A.; Judd, C. M.  (1984) “Estimating the Non-linear and 
Interactive Effects of Latent Variables,” Psychological Bulletin, 96, July: 
201-210. 
 
Li, F.; Harmer, P.; Duncan, T. E.; Duncan, S. C.; Acock, A.;  Boles S. 
(1998) “Approaches to Testing Interactions Effects Using Structural 
Equation Modeling Methodology”, Multivariate Behavioral Research, 33 
(1): 1-39. 
 
Martin, I. M.; Stewart, D. W. (2001) “The Differential Impact of Goal 
Congruency on Attitudes, Intentions, and the Transfer of Brand Equity”, 
Journal of Marketing Research, 38, November: 471-485. 
 
Mathieu, J. E.; Tannenbaum, S. I.;  Salas, E. (1992) “Influences of 
Individual and Situational Characteristics on Measures of Training 
Effectiveness”, Academy of Management Journal, 35 (4): 828-847. 
 
Moulder, B. C.; Algina, J. (2002) “Comparison of Methods for Estimating 
and Testing Latent Variables Interactions”, Structural Equation Modeling, 
9, January: 1-19. 
 
Ping, R. A. (1995) “A Parsimonious Estimating Technique for Interaction 
and Quadratic Latent Variables”, Journal of Marketing Research, 32, 
August: 336-347. 



 28

Ping, R. A. (1996) “Latent Variable Interaction and Quadratic Effect 
Estimation: A two Step Technique Using Structural Equation Analysis”, 
Psychological Bulletin, 119, January: 166-175. 
 
Rigdon, E. E.; Schumacker; R. E.; Whotke, W. (1998) “A Comparative 
Review of Interaction and Nonlinear Effects Modeling” in Schumacker, R. 
E.; Marcoulides, G. A., (ed.) Interactions and Non-linear Effects Structural 
Equation Models, Mahwah, NJ: Lawrence Erlbaum Associates. Inc. 
 
Saris, W. E.; Batista-Foguet, J. M.; Coenders, G.  “Selection of Indicators 
for the Interaction Term in Structural Equation Models with Interaction”. 
[Submitted to JMR]. 
 
Satorra, A. (1990) “Robustness Issues in Structural Equation Modeling: a 
Review of Recent Developments”, Quality and Quantity, 24, November: 
367-386. 
 
Satorra, A.; Bentler, P. M. (1988) “Scaling Corrections for Chi-square 
Statistics in Covariance Structure Analysis”, ASA Proceedings of the 
Business and Economic Section, 308-313. 
 
Satorra, A.;  Bentler, P. M. (1994) “Corrections to Test Statistics and 
Standard Errors in Covariance Structure Analysis”, in Von Eye, A.;  
Clifford, C. (ed.) Latent Variables Analysis: Applications to Developmental 
Research. Thousand Oaks,  CA: Sage Publications Inc. 
 
Schumacker, R. E. (2002) “Latent Variable Interaction Modeling”, 
Structural Equation Modeling, 9, January: 40-54. 
 
Schumacker, R. E.; Marcoulides, G. A. (1998) “Interactions and Nonlinear 
Effects Structural Equation Models”. Mahwah, NJ. Lawrence Erlbaum 
Associates, Inc. 
 
Schwartz, S. H. (1997) “Values and culture” in Munro, D.; Carr, S.;  
Schumaker J. (ed.) Motivation and culture. New York: Routledge. 
 



 29

Sethi, R.; Smith, D. C.; Park, C. W.  (2001) “Cross-functional Product 
Development Teams, Creativity, and the Innovativeness of New Consumer 
Products”, Journal of Marketing Research, 38, February: 73-85 
 
Du Toit, M.; Du Toit, S. (2001) Interactive LISREL, User'S Guide, 
Chicago, IL: Scientific Software International. 
 
Yang Jonsson, F. (1998) “Modeling Interaction and Nonlinear Effects in 
Structural Equation Modeling: A Step-by-Step LISREL Example” in 
Schumacker, R. E.; Marcoulides, G. A.  (ed.) Interactions and Non-linear 
Effects Structural Equation Models, Mahwah, NJ: Lawrence Erlbaum 
Associates, Inc.  
 
Yang Wallentin, F.;  Jöreskog, K.  (2001) “Robust Standard Errors and Chi-
squares for Interaction Models”, in Marcoulides, G. A.; Schumacker R. E. 
(ed.) New Developments and Techniques in Structural Equation Modeling, 
Mahwah, NJ: Lawrence Erlbaum Associates, Inc.  
 


