

# **Geopolitics of Energy Security:**

# Five framings from a global Indian perspective

**Dr Arunabha Ghosh** CEO Council on Energy, Environment and Water New Delhi

The Coming Energy Market ESADEgeo and Aspen España Madrid, 24 November 2011

## **CEEW** connecting dots: integrated approach; international approach





Global Policy Volume 2 . Special Issue . September 2011

#### Seeking Coherence in Complexity? The Governance of Energy by Trade and Investment Institutions

**Change & Energy** 

#### Climate Change & Business Leadership in India India-IIS Tu

ange & Cutting Both Ways? Climate, Trade an the Consistency of India's Domestic Policies India-U.S. Track II Dialogue on Climate

National Water Resources Framework Study



Harnessing the Power Shift

Governance options for international climate financing

# Analysing the National Solar Mission

#### Governance of Geoengineering





Understanding Complexity; Anticipating Change From Interests to Strategy on Global Governance



Maharashtra-Guangdong Partnership on Sustainability





# India-U.S. Joint Clean Energy R&D Centre



#### Five ways to frame the energy security debate

- Energy access: or how to lose (or win) an election
- Energy technology: or how to upscale efficiency
- Energy demand: or how to confront supply constraints
- Energy horizons: or how to promote renewable energy
- Energy cooperation: or how to avoid disputes and conflict



#### Per capita energy consumption is small for India





#### **Energy inequality in India**





#### Agriculture still a major consumer of energy





SOURCE: http://earthtrendsdelivered.org/energy\_consumption\_by\_sector\_in\_2007\_china\_usa\_india\_japan\_russia\_eu-27, 2009

# Agricultural energy consumption





Geographical distribution of electric agricultural pump sets

# Energy-groundwater nexus: deepening crisis





#### Five ways to frame the energy security debate

- Energy access: or how to lose (or win) an election
- Energy technology: or how to upscale efficiency
- Energy demand: or how to confront supply constraints
- Energy horizons: or how to promote renewable energy
- Energy cooperation: or how to avoid disputes and conflict



#### Fossil fuels dominate the power capacity for now



\*Renewable Energy Sources(RES) include SHP, BG, BP, U&I and Wind Energy, SHP= Small Hydro Project , BG= Biomass Gasifier ,BP= Biomass Power,, U & I=Urban & Industrial Waste Power, RES=Renewable Energy Sources



#### Mapping India's energy sources





#### And coal dominates electricity generation





## Private sector's share in electricity generation is gradually increasing





# Efficient technologies cost money



Incremental costs for higher efficiency, lower emissions technologies

**Coal-power technology** 



#### Many recent initiatives for climate financing but low ambitions so far



\$ million, figures updated as of August 2010



Note 1: UK Environmental Transformation Fund – International Window: Funds channelled through CIFs, FCPF, and CBFF, hence not included separately. Note 2: Strategic Climate Fund (MDB): Funds channelled through PPCR, FIP, and SREP, hence not included separately.

Note 3: For the Adaptation Fund (UN), the money raised from the monetisation of CERs is included under pledges.

Note 4: Funds for the Strategic Priority on Adaptation (SPA) are sourced from the GEF Trust Fund.

Note 5: For the GEF Trust Fund, only pledges/deposits under the climate change focal area for the fourth and fifth funding replenishments are included.

#### Climate funding sources are many but governance is often interlinked





#### Five ways to frame the energy security debate

- Energy access: or how to lose (or win) an election
- Energy technology: or how to upscale efficiency
- Energy demand: or how to confront supply constraints
- Energy horizons: or how to promote renewable energy
- Energy cooperation: or how to avoid disputes and conflict



#### Meanwhile, energy demand is rapidly rising

- **EEW**
- Presently, over 84% of the villages are electrified; but only 43.5% of the rural households have access to electricity
- Demand for power has been growing at the rate of 5.74% in recent years
- Demand for oil doubled in a decade to 2.9 mbpd in 2008; projected to reach 7 mbpd by 2030
- India imported 17.8% of its commercial energy in 1991; today, it imports more than 30%
- Indian Strategic Petroleum Reserves: 36.7 mb or 10 days of consumption by 2012; plan for 90 days of reserves



|                                          | Trer    | nds in Deman | d and Sup | ply of Prim | ary Energ | jy (All in M | toe)     |
|------------------------------------------|---------|--------------|-----------|-------------|-----------|--------------|----------|
|                                          | 1960–61 | 1970–71      | 1980–81   | 1990–91     | 2000–01   | 2006–07      | 2011–12* |
| Domestic production of commercial energy | 36.78   | 47.67        | 75.19     | 150.01      | 207.08    | 259.56       | 435      |
| Net imports                              | 6.04    | 12.66        | 24.63     | 31.07       | 89.03     | 131.97       | 111      |
| Total commercial<br>energy               | 42.82   | 60.33        | 99.82     | 181.08      | 296.11    | 391.53       | 546      |
| Non-commercial<br>energy                 | 74.38   | 86.72        | 108.48    | 122.07      | 136.64    | 147.56       | 169      |
| Total primary energy<br>demand           | 117.20  | 147.05       | 208.30    | 303.15      | 432.75    | 539.09       | 715      |

\* Projected requirement at the end of the Eleventh Plan as per the IEPC report.

#### India's energy demand





SOURCE: Integrated Energy Policy Report (IEPR), 2006



#### Hydrocarbon reserves: coal is king

| Resources                | Unit | Proved | Inferred | Indicated | Productio | Net     | Reserve/ | Production |
|--------------------------|------|--------|----------|-----------|-----------|---------|----------|------------|
|                          |      |        |          |           | 05        | 2004-05 |          |            |
|                          |      | Р      |          | I         | Q         | М       | P/Q      | (P+I)/Q    |
| Coal (as on 1.1.2005)    | Mtoe | 38114  | 48007    | 15497     |           |         |          |            |
| Extractable Coal**       | Mtoe | 13489  | 9600     | -15650    | 157       | 16      | 86       | 147-186    |
| Lignite (as on 1.1.2005) | Mtoe | 1220   | 3652     | 5772      |           |         |          |            |
| Extractable Lignite      | Mtoe | 1220   |          |           | 9         |         | 136      | 136        |
| Oil (2005)               | Mtoe | 786*   |          |           | 34        | 87      | 23       | 23         |
| Gas (2005)               | Mtoe | 1101*  |          |           | 29        | 3(LNG)  | 38       | 38         |
| Coal Bed Methane         | Mtoe | 765    |          | 1260-2340 |           |         |          |            |
| In-situ Coal             |      |        |          |           |           |         |          |            |
| Gasification***          |      |        |          |           |           |         |          |            |
| Total                    |      | 56695  |          |           | 229       | 106     | 283      | 344-383    |

\* Balance Recoverable Reserves, \*\* Extractable coal from proved reserves has been calculated by considering 90% of geological reserve as mineable and dividing mineable reserve by Reserve to Production ratio (2.543 has been used in 'Coal Vision 2025' for CIL blocks); and range for extractable coal from prognosticated reserves has been arrived at by taking 70% of indicated and 40% of Inferred reserve as mineable and dividing mineable reserve by R:P ratios (2.543 for CIL blocks and 4.7 for non-CIL blocks as per 'Coal Vision 2025'). \*\*\* From deep seated coal (not included in extractable coal reserves) Note: Indicated Gas resource includes 320 Mtoe claimed by Reliance Energy but excludes the 360 Mtoe of reserves indicated by GSPCL as the same have not yet been certified by DGH.

SOURCE: Integrated Energy Policy Report of the Expert Committee, Planning Commission, 2006



|               | P                                   | Principal Hydr                             | Pumped<br>Storage<br>Feasible                                          | Small Hydro<br>(up to 15 |                    |  |
|---------------|-------------------------------------|--------------------------------------------|------------------------------------------------------------------------|--------------------------|--------------------|--|
| Region        | Potential at<br>60 %<br>Load Factor | Feasible<br>Installed<br>Capacity in<br>MW | asible<br>stalled Potential in<br>bacity in billion kWh<br>MW per year |                          | Potential in<br>MW |  |
| Northern      | 30155                               | 53405                                      | 225                                                                    | 13065                    | 3180               |  |
| Western       | 5679                                | 8928                                       | 31.4                                                                   | 39684                    | 661                |  |
| Southern      | 10768                               | 16446                                      | 61.8                                                                   | 17750                    | 801                |  |
| Eastern       | 5590                                | 10965                                      | 42.5                                                                   | 9125                     | 530                |  |
| North Eastern | 31857                               | 58956                                      | 239.3                                                                  | 16900                    | 1610               |  |
| Total         | 84044                               | 148700                                     | 600                                                                    | 95524                    | 6782               |  |

#### India's energy demand, by source





Source-wise Energy Demand

#### But growth in coal production is slow



#### **Coal Production (in million tonnes)**

| Company | Target<br>2010-11 | Actual upto<br>Dec. 2010 | Achievement<br>(%) | 2009-10<br>Actual up to<br>Dec. 2009 | Growth (%) |
|---------|-------------------|--------------------------|--------------------|--------------------------------------|------------|
| CIL     | 460.50            | 299.52                   | 65.04              | 295.51                               | 1.36       |
| SCCL    | 46.00             | 36.33                    | 78.98              | 36.55                                | -0.60      |
| Others  | 65.87             | 33.56                    | 50.94              | 33.60                                | -0.12      |
| Total   | 572.37            | 369.41                   | 64.54              | 365.66                               | 1.02       |





But refining capacity trebled from 51 mmtpa in 1991 to 148 mmtpa in 2007

SOURCE: http://www.eia.gov/cabs/India/Full.html, 2011; Joshi (2009)





SOURCE: http://www.eia.gov/cabs/India/Full.html, 2011; Joshi (2009); Joshi (2011)

#### Oil imports already meet about 80% of demand











| Percentage Demand met from Domestic Sources (All in %) |         |         |         |         |         |         |          |  |  |  |
|--------------------------------------------------------|---------|---------|---------|---------|---------|---------|----------|--|--|--|
|                                                        | 1960–61 | 1970–71 | 1980–81 | 1990–91 | 2000–01 | 2006–07 | 2011–12* |  |  |  |
| Coal                                                   | 100     | 100     | 99.7    | 97.8    | 96.1    | 90.33   | 93.02    |  |  |  |
| Lignite                                                | 100     | 100     | 100     | 100     | 100     | 100     | 100      |  |  |  |
| Oil                                                    | 5.4     | 35.6    | 32.6    | 42.8    | 30.3    | 26.6    | 27.59    |  |  |  |
| Natural gas                                            | _       | 100     | 100     | 100     | 100     | 82.08   | 69.3     |  |  |  |
| Hydro power                                            | 100     | 100     | 100     | 99.93   | 99.96   | 99.74   | 95.94    |  |  |  |

\* Projected requirement at the end of the Eleventh Plan as per the IEPC report.

#### Self-reliance no longer feasible for India





|   |   | ( |   |   |   |
|---|---|---|---|---|---|
|   |   | 5 | C | / | 1 |
| Ľ | Ľ | L | L |   |   |
|   | V |   |   |   |   |

| Projected Primary Energy Requirement for India, 2030 (All in Mtoe) |                          |                                   |                     |            |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------|-----------------------------------|---------------------|------------|--|--|--|--|--|
| Fuel                                                               | Range of<br>Requirements | Assumed<br>Domestic<br>Production | Range of<br>Imports | Import (%) |  |  |  |  |  |
| Coal including lignite                                             | 632–1022                 | 560                               | 72–462              | 11–45      |  |  |  |  |  |
| Oil                                                                | 350–486                  | 35                                | 315–451             | 90–93      |  |  |  |  |  |
| Natural gas including coal bed methane (CBM)                       | 100–197                  | 100                               | 0–97                | 0–49       |  |  |  |  |  |
| Total commercial primary energy                                    | 1351–1702                | _                                 | 387–1010            | 29–59      |  |  |  |  |  |

Note: Range of imports is calculated across all scenarios by taking the minimum requirement and maximum domestic production as the lower bound and maximum requirement and minimum domestic production as the upper bound

#### Five ways to frame the energy security debate

- Energy access: or how to lose (or win) an election
- Energy technology: or how to upscale efficiency
- Energy demand: or how to confront supply constraints
- Energy horizons: or how to promote renewable energy
- Energy cooperation: or how to avoid disputes and conflict





#### India's renewable energy potential

| Resources            | Unit      | Present | Potential | Basis of Accessing Potential                                                                                         |
|----------------------|-----------|---------|-----------|----------------------------------------------------------------------------------------------------------------------|
| Hydro-power          | MW        | 32,326  | 1,50,000  | Total potential assessed is 84,000 MW"" at                                                                           |
|                      |           |         |           | 60% load factor or 1,50,000 MW at lower load factors                                                                 |
| Biomass              |           |         |           |                                                                                                                      |
| Wood                 | Mtoe/year | 140     | 620       | Using 60 million Ha wasteland yielding (20) MT/Halyear                                                               |
| Biogas               | Mtoe/year | 0.6     | 4         | In 12 million family sized plants                                                                                    |
|                      |           | 0.1     | 15        | In community based plants if most of the dung is put through them.                                                   |
| Bio-Fuels            |           |         |           |                                                                                                                      |
| Bio-diesel           | Mtoe/year | -       | 20        | Through plantation of 20'million hectares o wasteland or 7'million hectares of intensive cultivation                 |
| Ethanol              | Mtoe/year | <1      | 10        | From 1.2 million hectares of intensive cultivation with required inputs.                                             |
| Solar                |           |         |           |                                                                                                                      |
| Photovoltaic         | Mtoe/year | -       | 1,200     | Expected by utilising 5 million hectares wasteland at an efficiency level of 15 percent for Solar Photovoltaic Cells |
| Thermal              | Mtoe/year |         | 1,200     | MWe scale power plants using 5 million hectares                                                                      |
| Wind Energy          | Mtoe/year | <1      | 10        | Onshore potential of 65,000 MWe at 20 percent load factor                                                            |
| Small Hydro-<br>powe | Mtoe/year | <1      | 5         |                                                                                                                      |

#### **Small but growing share of renewables**



|     | Annual Achievement 2010-11 and Cumulative Achievement by June 2010 |                                               |                                           |  |  |  |  |  |
|-----|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--|--|--|--|--|
| No. | Source/System                                                      | Achievements during 2010-11 (up to 30.6.2010) | Cumulative achievements (up to 30.6.2010) |  |  |  |  |  |
|     |                                                                    |                                               |                                           |  |  |  |  |  |
| Α   | Grid                                                               | -interactive renewable pow                    | ver                                       |  |  |  |  |  |
| 1   | Biomass Power (Agro residues)                                      | 45.5 MW                                       | 901.1 MW                                  |  |  |  |  |  |
| 2   | Wind Power                                                         | 202.73MW                                      | 12009.48 MW                               |  |  |  |  |  |
| 3   | Small Hydro Power (up to 25 MW)                                    | 31.64 MW                                      | 2767.05 MW                                |  |  |  |  |  |
| 4   | Cogeneration-bagasse                                               | 67.5 MW                                       | 1411.53 MW                                |  |  |  |  |  |
| 5   | Waste to Energy                                                    | 7.5 MW                                        | 72.46 MW                                  |  |  |  |  |  |
| 6   | Solar Power                                                        | 2.0 MW                                        | 12.28 MW                                  |  |  |  |  |  |
|     | Total (in MW)                                                      | 356.87 MW                                     | 17173.9 MW                                |  |  |  |  |  |
|     |                                                                    |                                               |                                           |  |  |  |  |  |
| В   | Off-Grid/ Distributed Renew                                        | able Power (including Cap                     | tive/ CHP plants)                         |  |  |  |  |  |
| 7   | Biomass Power/Cogen.(non-<br>b a gasse)                            | 6.0 MW                                        | 238.17 MW                                 |  |  |  |  |  |
| 8   | Biomass Gasifier                                                   | 4.0 MWeq.                                     | 125.44 Mweq                               |  |  |  |  |  |
| 9   | Waste-to-Energy                                                    | 6.0 MWeq.                                     | 52.72 MWeq                                |  |  |  |  |  |
| 10  | Solar PV Power Plants                                              | 0.0 MWp                                       | 2.92 MWp                                  |  |  |  |  |  |
| 11  | Aero- Generators/ Hybrid<br>System                                 | 0.0 MW                                        | 1.07 MW                                   |  |  |  |  |  |
|     | Total (in MW)                                                      | 16.00MWeq                                     | 420.32 MWeq                               |  |  |  |  |  |

SOURCE: Conventional and Renewable Energy Scenario of India: Present and Future, Canadian Journal on Electrical and Electronics Engineering Vol. 1, No. 6, October 2010

#### But renewable energy potential largely under-utilised





## Grid-interactive renewable power: wind dominates so far





SOURCE: Conventional and Renewable Energy Scenario of India: Present and Future, Canadian Journal on Electrical and Electronics Engineering Vol. 1, No. 6, October 2010

#### Wind energy potential



SOURCE: http://www.cwet.tn.nic.in/html/departments\_wpdmap.html, 2010

#### Solar energy potential







#### Need for policies to match the real with the potential



#### Levelized Cost Comparison of Utility-scale PV and Conventional Power at Grid



| Grid Parity Year | Aggressive Case | Base-Case |
|------------------|-----------------|-----------|
| Utility PV Price | 2017-18         | 2019-20   |

#### Slowdown in sustainable energy investments began in early 2008





#### **Case for global cooperation?**





SOURCE: OKSolar.com

NOTE: Based on yearly averages of daily hours of sunlight and ambient temperature; chart prepared on 16 July 2011

#### Five ways to frame the energy security debate

- Energy access: or how to lose (or win) an election
- Energy technology: or how to upscale efficiency
- Energy demand: or how to confront supply constraints
- Energy horizons: or how to promote renewable energy
- Energy cooperation: or how to avoid disputes and conflict



# Key actors in global energy trade



|               | 1965–73        | 1974–81       | 1982–90       | 1991–2002     | 2003–10       |
|---------------|----------------|---------------|---------------|---------------|---------------|
| Oil importers | United States  | United States | United States | United States | United States |
|               | Japan          | Japan         | Japan         | Japan         | Japan         |
|               | France         | France        | France        | France        | China         |
|               | Germany        | Germany       | Germany       | Germany       | France        |
|               | United Kingdom | Italy         | Italy         | Italy         | Germany       |
| Oil exporters | Venezuela      | Saudi Arabia  | Saudi Arabia  | Saudi Arabia  | Saudi Arabia  |
|               | Iran           | Iran          | USSR          | Russia        | Russia        |
|               | Saudi Arabia   | USSR          | Venezuela     | Venezuela     | Iran          |
|               | Kuwait         | Kuwait        | Iraq          | Iran          | Norway        |
|               | USSR           | Venezuela     | Iran          | Norway        | UAE           |

# ECT membership has broadened beyond EU and Europe



|                      | EU     | ECT    | WTO    |                     | EU     | ECT    | WTO    |
|----------------------|--------|--------|--------|---------------------|--------|--------|--------|
| Country              | member | member | member | Country             | member | member | member |
| Albania              |        |        |        | Latvia              | •      | •      | ٠      |
| Armenia              |        | •      | •      | Liechtenstein       |        | •      | •      |
| Australia*           |        | •      | •      | Lithuania           | •      | •      | •      |
| Austria              | •      | •      | •      | Luxembourg          | •      | •      | •      |
| Azerbaijan           |        | •      |        | Macedonia           |        | •      | •      |
| Belarus*             |        | •      |        | Malta               |        | •      | •      |
| Belgium              | •      | •      | •      | Moldova             |        | •      | •      |
| Bosnia & Herzegovina |        | ٠      |        | Mongolia            |        |        |        |
| Bulgaria             | •      | •      | •      | Netherlands         |        |        |        |
| Croatia              |        | •      | •      | Norway*             |        |        |        |
| Cyprus               | •      | •      | •      | Poland              |        |        |        |
| Czech Republic       | •      | •      | •      | Portugal            | -      |        | -      |
| Denmark              | •      | •      | •      | Pomonio             |        | -      |        |
| Estonia              | •      | •      | •      | Pussion Enderation* | •      |        | •      |
| European Communities | •      | •      | •      | Caualula            |        |        | _      |
| Finland              | •      | •      | •      | Siovakia            | •      | •      | •      |
| France               | •      | •      | •      | Slovenia            | •      | •      | •      |
| Georgia              |        | •      | •      | Spain               | •      | •      | •      |
| Germany              | •      | •      | •      | Sweden              | •      | •      | •      |
| Greece               | •      | •      | •      | Tajikistan          |        | •      |        |
| Hungary              | •      | •      | •      | Turkey              |        | •      | •      |
| Iceland*             |        | •      | •      | Turkmenistan        |        | •      |        |
| Ireland              | •      | •      | •      | Ukraine             |        |        |        |
| Italy                | •      | •      | •      | United Kingdom      |        |        |        |
| Japan                |        | •      | •      | Uzbekistan          |        |        |        |

# Governing clean energy subsidies will be a growing challenge

Clean energy capacity/access



\* As per WTO rules, adverse impacts could result from: injury; serious prejudice; or nullification of benefits

# Alternative energy regimes for alternative priorities





#### Key takeaways



- Energy access will remain a political issue in India for decades to come
- Climate change has introduced complications in the energy security equation: India will seek out technology to increase fossil fuel efficiency
- India's fossil fuel infrastructure is increasingly dependent on foreign sources of supply: but without domestic reform, investments are unlikely to increase domestic capacity
- Renewable energy potential in India is under-utilised and is a tremendous market opportunity: India could take the lead in regional or plurilateral cooperation
- India is not party to any major energy governance regime: rules governing trade, climate and energy will need more coherence for investments and trade to increase



# **THANK YOU**

http://ceew.in