esade

TEACHING GUIDE - 2024-2025

Programming with Data

UGRA_015721

Departments Dept. of Operations, Innovation & Data Sciences

Teaching Languages English

ECTS 6

Teacher responsible Allué Vall Roger - roger.allue@esade.edu

C()urse G()als After successfully completing this course, students will have achieved the following learning objectives

and competencies:

Proficiency in Data Manipulation and Analysis: Students will gain a thorough understanding of
fundamental data manipulation and analysis techniques using Python libraries such as pandas and numpy.
They will learn to efficiently handle, process, and analyze large datasets, employing vectorization and

array operations to optimize performance.

Integration of Object-Oriented Programming (OOP) Principles: Students will develop a foundational
understanding of object-oriented programming principles and demonstrate their ability to integrate
these principles within their data analysis workflows. They will comprehend the concepts of classes,
objects, methods, and attributes, enabling them to build modular and reusable components within their

data-centric applications.

Design and Implementation of Data-Driven Solutions: Students will be able to design and implement
solutions for complex data-driven problems using both OOP and data manipulation techniques. By
employing libraries such as pandas and numpy, along with inheritance, encapsulation, and polymorphism,
they will create flexible, scalable, and maintainable code that effectively addresses real-world data

challenges.

Exception Handling and Design Patterns Overview: Students will acquire the knowledge and skills to
handle exceptions gracefully, minimizing disruptions and enhancing the reliability of their programs.
Additionally, they will explore common design patterns, focusing on their application in data processing

and analysis to create elegant and efficient solutions for recurring programming problems.

Testing and Debugging Techniques: Students will demonstrate their ability to effectively test and debug
their programs, incorporating both OOP and data manipulation aspects. They will employ systematic
testing methodologies, ensuring robustness and stability in their code, and utilize tools and techniques

specific to data analysis workflows.

Pl’evi()us kl]()VVl@dge This course welcomes students with a strong motivation and interest in learning the principles and
concepts of object-oriented programming with Python. Prior exposure to an introductory programming
course in Python will serve as a valuable starting point for effectively engaging with the OOP concepts

covered in this course.

UGRA_015721 - Programming with Data - 2024-2025 page 1/5

Prerequisits

Recomended courses

Teaching methodology

- Basic Syntax and Structure: Understanding of Python's syntax, including the use of indentation to

define blocks of code, and familiarity with basic constructs such as variables, data types, and comments.

- Control Flow: Proficiency in using control flow statements like if-else conditions, for and while loops,

and understanding how to control the execution flow of a program.Functions:

- Ability to define and call functions, including understanding function arguments, return values, scope,

and the use of built-in functions.

Successful completion of the course "Computing Foundations (2235.YR.015720.1)" is recommended for
this course.

This course carries a study load of 6 ECTS, equivalent to 150 hours of dedicated effort. The workload

will be distributed as follows:

- Approximately 30% of the study hours will be allocated to synchronous class activities. The course
comprises a total of 20 sessions, encompassing interactive lectures, in-class exercises, and quizzes,

requiring approximately 40 hours of active participation.

- Approximately T0% of the study hours will be dedicated to various assignments, projects, and exam
preparations, involving autonomous work. This portion of the workload demands approximately 110 hours

of self-directed study and completion of the assigned tasks.

Students are expected to engage actively in the synchronous sessions to grasp the course material
effectively. Furthermore, they will need to devote significant time and effort to the assigned projects and
exam preparations, fostering practical application of the learned concepts and strengthening their
understanding of the subject matter. To provide a dynamic and engaging learning environment, the
synchronous sessions will be thoughtfully structured, integrating theoretical lessons with in-class
practical activities relevant to the course concepts. Although the schedule may vary occasionally, each
session will typically involve cycles of approximately 15 minutes of theory followed by 15 minutes of

exercises.

To ensure an interactive and effective learning experience, it is essential that each student brings a
laptop to class. Students who don’t own a personal computer or who have issues working with it can

request one on lease from CAU.

This approach aims to strike a balance between theoretical understanding and practical application,
fostering active engagement and reinforcing the learned material. By integrating theory with hands-on
exercises, students will have the opportunity to immediately apply the knowledge acquired, solidifying
their comprehension and improving their problem-solving skills. Since all classes will be interactive,
students must be prepared to be full participants. Otherwise, this will limit their learning and undermine
the experience for the other students. Students' engagement and performance in class activities will be a
fundamental part of this course. Additionally, every two weeks or upon completing a unit, students will be
required to take a quiz assessment to evaluate their progress and understanding of the material. This
approach aims to foster active participation, reinforce learning, and facilitate regular assessment of
students'

comprehension.

UGRA_015721 - Programming with Data - 2024-2025 page 2/5

As part of their independent work, students will embark on a series of assignments to be completed
individually,

approximately scheduled every two or three weeks. These assignments serve as invaluable opportunities
for students to reinforce their learnings by tackling in-depth, real-world problems that demand critical
thinking and practical application of the concepts covered in class. Each assignment is expected to
require an approximate workload of 15 to 20 hours. Throughout these assignments, students will have
the chance to evaluate their knowledge and showcase their creativity, crafting original pieces of work
that demonstrate their proficiency. While students are encouraged to discuss coding approaches to
solve the assignments, the final work products they submit must be their own, unless explicitly stated
otherwise in the assignment instructions. This course will be managed through a dedicated moodle
website. Students will find there all the necessary materials, including study guides for every session,
class materials and further references. Students should familiarize themselves with this environment

before the start of the course and check for updates regularly.

Description

C()urse C()ntl’ibuti()n TO The course "Programming with Data" explores the fundamental principles of data manipulation and
. . analysis using the Python programming language. With an increased emphasis on leveraging libraries such
program _ , o .
as pandas and numpy, students will acquire essential skills to handle and analyze large datasets efficiently,

design and implement scalable programs, and address complex data-driven challenges.

Throughout this course, participants will investigate both the principles of object-oriented programming
(OOP) and the techniques of data manipulation. By gaining understanding of classes, objects,
inheritance, polymorphism, encapsulation, and the utilization of pandas and numpy for vectorization and
array operations, students will be well-prepared to create Python-based solutions for real-world

problems.

Content

Topic

|‘

1 Unit 1 - Presentation & Setup In this unit, students will be introduced to the course and the PyCharm integrated
development environment (IDE). They will learn how to set up a Python project in PyCharm and navigate its interface.
Presentation & setup. - Introduction to the course - Overview of PyCharm as an integrated development environment

(IDE). - Setting up a Python project in PyCharm. - Navigating the PyCharm interface and using its features.

2 Unit 2 — Introduction to Python This unit offers a comprehensive review of Python essentials, including expressions,
conditionals, loops, dictionaries, and input/output. These fundamental concepts are crucial for grasping upcoming object-
oriented programming topics. Additionally, the unit introduces environment diagrams, enhancing students' understanding of
program execution and scope. Introduction to Python. - Expressions - Names, assignments, and user-defined functions -
Environment diagrams - Multiple environments - Conditional statements - Functions - Iterations - Data structures -

Miscellaneous Python features - Input/output

3 Unit 3 - Object-oriented programming This unit offers an in-depth exploration of object-oriented programming (OOP)
fundamentals, covering essential topics such as abstraction, inheritance, polymorphism, encapsulation, and error handling.
Students will grasp the core concepts of OOP in Python, including classes, objects, inheritance types, and error
management using exceptions. Intro to the OOP Paradigm - What is OOP¢ - Difference between object and procedural
oriented programming - OOP main concepts - Object Oriented Programming Languages. Fundamentals of OOP in python -
Classes, attributes, and objects in Python. - Relations between classes and objects. Inheritance - Single and multiple
inheritance. - Interface inheritance and implementation inheritance. - Benefits of inheritance. - Code reuse techniques.

Abstraction - Abstract Base Classes. - Protocols Polymorphism - Polymorphism in Python. - Dynamic and static

UGRA_015721 - Programming with Data - 2024-2025 page 3/5

3 polymorphism. - Method overriding and method overloading. Encapsulation - Encapsulation and information hiding in Python.

- Decorators and property decorators. Error Handling - Error handling using exceptions.

4 Unit 4 - Testing and Debugging OOP Programs This unit focuses on testing and debugging OOP programs, introducing

students to unit testing in Python and debugging techniques. Testing and debugging OOP programs. - Unit testing in

Python. - TraceBacks - Debugging techniques for OOP code.

5 Unit 5 - Python Libraries and Modules In this unit, students will explore Python libraries and modules, gaining proficiency in

their creation, application, and dependency management. The module provides an overview of essential libraries like Pandas

and NumPy, covering topics such as Series, DataFrames, nd-arrays, operations, indexing, slicing, and file I/O. Python

Libraries and Modules - Introduction to Python libraries and modules. - Creating and using Python modules. - Exploring

popular Python libraries. - Understanding third-party libraries and package managers. - Managing dependencies in Python

projects. - Best practices for creating and using Python libraries and modules. Using library Pandas - Series and Dataframes

- Loading DataFrames from files - Most important DataFrame operations Using library NumPy - Numpy Vs Python list - nd-

array - Operations - Indexing - Slicing - File input/output

6 Unit 6 — Course closure Concluding the course, this unit offers a concise recap of key Object-Oriented Programming

paradigm elements. Students will reflect on takeaways and insights gained, preparing for the final exam through a Q&A

session that addresses any remaining questions. Course closure - Recap of main aspects of Object-Oriented Programming

paradigm. - Takeaways and lessons learned. - Final exam preparatory Q&A

Assessment

Tool Assessment tool Category Weight %
In-class analysis and discussion of Participation Ordinary round 10.00%
issues
Quizzes/tests Quizzes Ordinary round 20.00%
Written and/or oral exams Exams Ordinary round 30.00%
Individual or team exercises Assignments Ordinary round 40.00%
Attendance and punctuality Attendance. In accordance with Ordinary round 0.00%

ESADE regulations, attendance is

mandatory for this course. Students

who fail to attend 80% of the course

will not be allowed to pass and will be

required to sit the retake exam.
Written and/or oral exams If a retake exam is needed, it will Retake 60.00%

replace the mid-term and final exams,

carrying 60% weight, while other

course components will contribute the

remaining part of the grade..
Quizzes/tests Quizzes Retake 10.00%
Individual or team exercises Assignments Retake 25.00%
In-class analysis and discussion of Participation Retake 5.00%
issues

UGRA_015721 - Programming with Data - 2024-2025 page 4/5

PROGRAMS

DBAI21-Double Degree in Business Administration and Artificial Intelligence for Business (Undergraduates: Business)
DBAI21 Year 2 (Optative)

DBAI23-Double Degree in Business Administration and Artificial Intelligence for Business (Undergraduates: Business)
DBAI23 Year 1(Optative)

UGRA_015721 - Programming with Data - 2024-2025 page 5/5

